
Abstract. This paper reviews the construction of mo-
lecular potential-energy surfaces by an interpolation
method which has been developed over the last several
years. The method uses ab initio quantum chemistry
calculations of the molecular electronic energy in an
automated procedure to construct global potential-
energy surfaces which can be used to simulate chemical
reactions with either classical or quantum dynamics. The
methodology is explained and several applications are
presented to illustrate the approach.
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1 Introduction

How can we understand the mechanisms and evaluate
the rates of chemical reactions? Let us begin by thinking
about the simplest chemical reactions; those that take
place in a single electronic state, in the gas phase at such
low pressure that only single collisions between mole-
cules are relevant to the process. Even so, a complete
understanding of how reaction occurs in such a collision
requires that we know how all the atomic nuclei move
during the reactive event.
At each instant in time, we can imagine a snapshot

of the collision; the atomic nuclei are frozen in some
positions in space. What we mean by saying that the
reaction takes place in a single electronic state is that
the wavefunction for the electrons is given by a single
eigenfunction of the time-independent Schrödinger
equation with the positions of the nuclei fixed in space.
The electronic energy depends on the positions of the
nuclei, and if the nuclei change position continuously,
the total electronic energy changes continuously. The

motion of the nuclei is now determined by the way the
electronic energy changes as the nuclei change position.
In classical or Newtonian dynamics, we would say that
the nuclei are subject to forces which are given by the
derivatives of the total electronic energy with respect to
the nuclear positions. In quantum dynamics, the motion
of the nuclei is determined by the Schrödinger equation
which contains the nuclear kinetic energy and a po-
tential-energy term which is precisely the total elec-
tronic energy.
All of this is mother’s milk to most readers of this

journal. Clearly, to get to this point we have refused to
consider the multitude of difficulties associated with the
multiplicity of electronic states possible for any mole-
cule, and the role of solvent molecules which are critical
to any chemistry except that of low-pressure gases.
Nevertheless, the smaller problem we have chosen to
chew on here is quite difficult enough to start with.
As readers know, we can calculate the total electronic

energy of a molecule using the techniques and computer
programs of ab initio quantum chemistry. There is a
hierarchy of such techniques ranging in both accuracy
and computational cost, from the simple Hartree–Fock
(HF) approach to those with high-level treatments of
electron correlation. There are also semiempirical
methods, like density functional theory. As we will see in
later applications, the accuracy with which the total
electronic energy must be calculated in order to accu-
rately simulate chemistry varies from reaction to reac-
tion. However, for the time being we can expect that the
computational effort to evaluate the total electronic
energy of a molecule is considerable, even for just one
choice of positions for the nuclei. To understand the
mechanism of a chemical reaction, we will need to follow
the nuclei as they move over a great range of positions
or ‘‘configurations’’. To do this we will need to calculate
the total electronic energy for ‘‘every’’ configuration (in
practice at least 107 configurations even for a molecule
with only four atoms). It is simply too time consuming
to perform this many ab initio calculations. We need
some approximate (but sufficiently accurate) means to
construct this global potential-energy surface (PES).
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It is important to understand the character and mag-
nitude of the problem. We all know that the PES for
a simple diatomic molecule looks something like the
familiar Morse function of the bond length. For a mol-
ecule withN atoms, the molecular shape is determined by
3N ) 6 ‘‘internal’’ coordinates. We cannot draw the PES,
even for a triatomic molecule, because there are too many
coordinates; and we cannot write down a simple function,
like the Morse function, which describes the energy
surface, even in three dimensions. Nevertheless, until
recently, virtually all research into PESs for reactive
systems began by adopting some rather complicated
functional form for the PES, and ‘‘fitting’’ the multitude
of parameters contained in that function so that the PES
agreed with ab initio calculations of the energy or with
energies inferred from experimental data. Several PESs
were derived for triatomic systems in this way; but few for
reactions involving four atoms, and but very few surfaces
for larger systems. Why? Because there is no systematic
method for choosing suitable functional forms. In this
author’s opinion, this approach has no future.
PESs for reactions involving many atoms must be

derived in a systematic way. If the approach is system-
atic, it can be automated; that is, we must let a computer
do the job. This overview only reports the progress
my group has made in this direction. The method for
constructing PESs, in its current state of refinement, is
presented in Sect. 2. Evidence that the method is suffi-
ciently accurate to describe chemical reaction dynamics
is presented in Sect. 3. Two applications are briefly
reviewed in Sect. 4, and some concluding remarks are
presented in the final section.

2 The method

2.1 Basic input

The only systematic method for determining the total
electronic energy of any molecule is ab initio quantum
chemistry. So, that is what we use. Some ab initio
methods can provide relatively inexpensive calculations
of the derivatives of the molecular energy with respect to
the Cartesian coordinates of the atomic nuclei. Some-
times second-order (and even third- and fourth-order)
derivatives are readily available from so-called ‘‘analyt-
ic’’ methods. In any event, such derivatives of the energy
can be obtained by finite differences of the energies at
neighbouring configurations. These derivatives provide
information about the local shape of the surface. The
PES can be written as a series expansion (a Taylor
expansion) in the deviation of the nuclear configuration
away from a geometry where such derivatives have been
evaluated. It makes sense to take advantage of this type
of available information, so that is what we do.

2.2 Molecular coordinates

A crucial factor in the description of a molecular PES is
the choice of molecular coordinates employed. Let us
say we have N atoms in the molecule, and that

X ¼ ðx1; y1; z1; x2; . . . ; zN Þ ð1Þ
denotes the geometry of the molecule in terms of 3N
Cartesian coordinates. We do not want to write a local
expansion of the PES in terms of these Cartesian
coordinates, since the PES is only a function of the
shape of the molecule, and this shape is described by the
‘‘internal’’ coordinates (there are 3N)6 of them for a
noncollinear molecule). Which ones? There are many
possible choices, traditionally, atom–atom distances
(bond lengths), bond angles, dihedral or out-of-plane
angles, or some combination of these. One can show
from the group theory of functions which are invariant
to rotation (the PES is one) that the energy can be
expressed solely in terms of all the atom–atom distances

[1, 2]. For N atoms there are
N
2

� �
¼ NðN � 1Þ=2 such

distances. If N > 4, then NðN � 1Þ=2 > 3N � 6, which
means there appear to be more ‘‘bond length’’ coordi-
nates than we need. Actually, there are not, but let us
leave that story till later. There are three atoms defining

a bond angle, so there are
N
3

� �
possible angles in a

molecule. There are even more,
N
4

� �
, possible dihedral

angles in a molecule. Clearly, the number of possible
bond angles and dihedral angles scales very badly with
N, and they are not actually needed in addition to the
bond lengths. Of course, a limited number of bond
angles and dihedrals are commonly used to describe
molecular geometries, but this is the result of human
choice, and we do not know how to easily automate such
choices, so all these angles are discarded.
The atom–atom distances, Rn, n ¼ 1; . . . ;NðN � 1Þ=2,

are easily calculated from the Cartesian coordinates, for
example,

R1 ¼ x1 � x2ð Þ2þ y1 � y2ð Þ2þ z1 � z2ð Þ2
h i1

2

: ð2Þ

R2 is then the distance from atom 1 to at-
om 3; . . . ;RNðN�1Þ=2 is the distance from atom N ) 1 to
atom N. Rather than use these atom–atom distances, we
actually use the reciprocal distances, Zn:

Zn ¼
1

Rn
: ð3Þ

The reason we make this choice is that a PES is not
an analytic function of the atomic coordinates, because
it diverges to infinity when any two atoms are at the
same position. Using the {Zn} to describe the PES means
that these singularities are banished to infinity, Znfi¥,
resulting in a much better behaved description of the
PES. This useful idea was introduced in the context of
diatomic PESs [3, 4].
We have one remaining important technical question

about coordinates to resolve. There are N(N ) 1)/2 Zn

and only 3N ) 6 independent coordinates which define
the shape of a molecule. When N > 4 there appear to be
too many Zn. This problem has plagued many workers,
including our group. The resolution is to be found by
accepting that the {Zn} are not globally redundant.
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What do I mean? Consider the two configurations of a
five-atom molecule sketched in Fig. 1. The second con-
figuration differs from the first in having atom 5 re-
flected through the plane of atoms 1, 2 and 3. There are
ten Rn or Zn, but 3N � 6 ¼ 9. The first nine Zn (shown
by lines in Fig. 1) appear to define the shape of both
molecules in a local sense: you cannot change the shape
of either configuration a little bit without changing at
least one atom–atom distance R1; . . . ;R9. So we could
describe changes of molecular shape by the changing
values of Z1; . . . ; Z9. However, the values of Z1; . . . ; Z9
are the same for both molecular configurations, so
Z1; . . . ; Z9 do not provide a unique description of the
molecular shape. We need to know the value of Z10 to
tell these configurations apart. The set fZ1; . . . ; Z9g are
good coordinates to describe local changes of shape, but
not good global coordinates. With a little reflection, you
will probably appreciate that any choice of nine of the
ten Zn will fail in similar fashion for some configura-
tions. All ten Zn are needed for a global description of
molecular shape, and no one subset of nine will be ad-
equate everywhere. The space of molecular coordinates
which defines the shape of a molecule is not a rectilinear
or Euclidean space, it is a curved manifold. It is well
known in the mathematical literature that you cannot
find a global set of coordinates for such curved spaces.
However, in the next section we will describe the local

shape of a PES, and to do that we will need 3N ) 6 locally
independent coordinates which completely and uniquely
describe local changes in the molecular shape. We must
choose 3N ) 6 coordinates for this local description, and
from the earlier argument, we must make different
choices in different locales. The details of how we do this

can be found in the original article by Thompson et al.
[5]. This approach is related to the use of a generalised
inverse of the Wilson Gmatrix [6] by Pulay and Fogarasi
[7] in geometry optimisation in redundant coordinates
and by Truhlar and coworkers in reaction path
dynamics.[8, 9, 10] A simplified version of our method is
as follows.
The local changes in the {Zn} relative to changes in

the Cartesian coordinates, {Xi}, are given by the matrix
B (a variant of the Wilson B matrix: [6])

Bni ¼
@Zn
@Xi

; n ¼ 1; . . . ;NðN � 1Þ=2; i ¼ 1; . . . ;3N : ð4Þ

Any matrix can be written in the form of a singular
value decomposition [11, 12]:

B ¼ UKVT ; ð5Þ
where U is an NðN � 1Þ=2� NðN � 1Þ=2 unitary matrix,
V is a 3N · 3N unitary matrix, and L is a diagonal
NðN � 1Þ=2� 3N matrix (only the Lii elements can be
nonzero). Moreover, and most importantly, only 3N ) 6
of the Lii are not zero. This remarkable fact is simply a
mathematical reflection of the physical reality that there
are only 3N ) 6 independent ways that we can change
the Cartesian coordinates and thereby change the shape
of the molecule (and so change the {Zn}). From Eqs. (4)
and (5), we can see that a change in X produces a change
in Z according to the relation

dZ ¼ BdX ¼ UKVTdX : ð6Þ
Defining

n ¼ UTZ;

Y ¼ VTX ;
ð7Þ

we have from Eq. (6)

dni ¼ KiidYi : ð8Þ
As V is a unitary matrix, Y ¼ VTX is just an equiv-

alent set of Cartesian coordinates, and n ¼ U
T
Z is just

an equivalent set of internal coordinates, simply linear
combinations of the {Zn}. Since 3N ) 6 of the Lii are
nonzero, Eq. (7) has defined 3N ) 6 internal coordi-
nates, n1; . . . ; n3N�6, which change in simple proportion
to changes in linear combinations of the Cartesian co-
ordinates. That is, locally, we have defined 3N ) 6 in-
dependent internal coordinates as linear combinations of
the {Zn}. Note that every different configuration of the
molecule, X, will have a different B matrix, and hence a
different definition of local internal coordinates, defined
automatically. We do not care that we change coordi-
nates from place to place, it is enough that they provide
a ‘‘good’’ local description of how the molecular shape
can change.

2.3 Local shape of the PES

As we laboured to stress in the last section, the PES is
only a function of the 3N ) 6 internal coordinates of
a molecule, and we can eliminate the six translation
and rotation coordinates by transforming the energy

Fig. 1. Two distinct geometries for a five-atom molecule, which
have the same values for nine atom–atom distances

315



gradient and second derivatives into internal coordi-
nates. This is achieved by solving the following linear
equations which follow from a simple change of
variables:

@E
@Xi

¼
X3N�6

n¼1

@E
@nn

@nn
@Xi

; i ¼ 1; . . . ; 3N ; ð9aÞ

@2E
@Xi@Xj

¼
X3N�6

n¼1

X3N�6

m¼1

@2E
@nn@nm

@nn
@Xi

@nm
@Xj

þ
X3N�6

n¼1

@E
@nn

@2nn
@Xi@Xj

: ð9bÞ

Given ab initio gradients and second derivatives,
Eq. (9) is solved numerically to give the energy gradients
and second derivatives in terms of our local internal
coordinates (as defined by Eqs. 6, 7). We can always
solve Eq. (9), and solve it uniquely, because of the way
our local internal coordinates are defined, except in two
possible situations. Firstly, if the molecule is linear, no
complete set of 3N ) 6 internal coordinates can be de-
fined. For this case, a method for constructing PESs in
terms of Cartesian coordinates has been reported [13],
but we will not consider this alternative, and less widely
applicable, approach here. Secondly, if the molecule is
planar, atom–atom distances (or their reciprocals) can-
not provide a complete set of internal coordinates, since
they cannot describe out-of-place motion. However, we
have found the coordinates {Zn} so useful that we retain
these coordinates and avoid planar geometries. That is,
we will never evaluate the ab initio energy and derivatives
at a perfectly planar molecular geometry (if necessary, it
is ‘‘buckled’’). In our experience, ab initio ‘‘data’’ can be
evaluated sufficiently close to planar geometries that the
PES described in the following is sufficiently accurate at
these planar geometries.
Once the internal coordinate derivatives of the energy

are known, the PES can be approximated in the vicinity
of some configuration n(i)=n[X(i)] as a Taylor expan-
sion, Ti(n):

EðnÞ 	 TiðnÞ ¼ E½nðiÞ� þ
X3N�6

n¼1
nn � nnðiÞ½ �@E

@nn

����
nðiÞ

þ 1

2

X3N�6

n¼1

X3N�6

m¼1
nn � nnðiÞ½ �

� nm � nmðiÞ½ � @2E
@nn@nm

����
nðiÞ

þ � � � ð10Þ

This expansion can be continued beyond the terms
which are second order in deviations of n from n(i), but
only at the cost of calculating the corresponding higher-
order ab initio Cartesian derivatives.

2.4 Modified Shepard interpolation

Equation (10) provides an accurate PES only in the
vicinity of n(i). The range of configurations relevant to
a chemical reaction is much larger than the range of

accuracy of Eq. (10). Therefore, if we wish to base our
approximation for the PES on such Taylor expansions,
we will need many different reference configurations,
n(i), which is why we have included a counter, i, in the
notation. From here on, these n(i) are called ‘‘data
points’’. Suppose we have Ndata such data points. Then,
a modified Shepard interpolation [14, 15] gives the PES
as a weighted average of these Taylor expansions:

EðZÞ ¼
XNdata
i¼1

wiðZÞTiðZÞ : ð11Þ

Data points which are ‘‘closer’’ to the configuration
in question, Z, should have larger weights than data
points which are ‘‘far’’ from Z. As we shall see, it is
important to quantify what we mean by ‘‘close’’ and
‘‘far’’. Firstly, if the weights are to depend on a distance,
which distance? We cannot measure distance as the
norm, ||n ) n(i)||, because the definition of the internal
coordinates varies from one data point to another. Al-
though the Z coordinates may be locally redundant, they
can be used globally, so initially we chose to measure
the distance between a data point and any arbitrary
configuration as ||Z ) Z(i)||:

Z� ZðiÞk k ¼
XNðN�1Þ=2

k¼1
Zk � ZkðiÞ½ �2

( )1
2

: ð12Þ

The weights in Eq. (11) are initially taken to be a
function of such distances. To make Eq. (11) an average
over the Taylor series, the weights are normalised:

XNdata
i¼1

wi ¼ 1 : ð13Þ

This normalisation is easily ensured by writing the wi
in terms of a ‘‘primitive weight’’, vi:

wi ¼
viPNdata

j¼1
vj

: ð14Þ

It has been shown that Eq. (11) is an interpolation of
the Taylor series up to the nth order derivatives if

vi / Z� ZðiÞk k�ðnþ1Þ as Z� ZðiÞk k ! 1 : ð15Þ
That is, the value and derivatives of E(Z), up to nth

order, agree with the corresponding values of Ti as
Z fi Z(i), if the primitive weight diverges as fast as
Z� ZðiÞk k�ðnþ1Þ. For our second-order Taylor expan-
sions, n ¼ 2. Moreover, it can also be shown [16] that
Eq. (11) becomes exact as Ndata fi ¥, if

vi / Z�ZðiÞk k�p; p> 3N �3; as Z�ZðiÞk k!1 : ð16Þ

Rapid decay of the weight function at large distance
ensures that data points far from the configuration Z
make no significant contribution in Eq. (11). Clearly, the
simplest implementation of Eq. (11) for the PES will use
Eq. (14) with

vi ¼ Z� ZðiÞk k�p; p > 3N � 3 : ð17Þ
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This was indeed our first implementation of modified
Shepard interpolation in the construction of PESs.
However, the accuracy of Eq. (11) can be improved
significantly by more ‘‘intelligent’’ weights.

2.5 Confident weights

The simple weight function of Eq. (17) varies much
more rapidly near Z(i) than is necessary for the PES to
be an interpolation of the data at Z(i) (see Eq. 15),
which leads to unphysically ‘‘sharp’’ features in the PES
[5]. This problem can be simply solved by setting

vi ¼
Z� ZðiÞk k
radðiÞ


 �q
þ Z� ZðiÞk k

radðiÞ


 �p� �1
; ð18Þ

where p>3N ) 3, and q > 2, but q � p. In Eq. (18),
rad(i) plays the role of a confidence radius. If
Z� Z ið Þk k<rad(i), then the first term on the right-hand
side of Eq. (18) dominates, and vi falls relatively slowly
as Z� Z ið Þk k increases, while if Z� Z ið Þk k>rad(i), the
second term dominates, and vi falls to zero very rapidly
as Z� Z ið Þk k increases. An important consequence of
this ‘‘two-part’’ weight function is that the relative
weights of two or more data points near Z vary only
slowly with varying Z; reducing the unphysically sharp
features in the PES associated with Eq. (17). This begs
the question, what is the value of rad(i)? That is, over
what distance is the Taylor series Ti accurate?
The confidence length, rad(i), can be determined by a

Bayesian statistical analysis of the observed error in the
corresponding Taylor expansion [17]. Suppose that we
have evaluated Ndata data points. From the position of
one data point, say Z(i), the remaining data points are
scattered around it in the 3N ) 6 dimensional space
of molecular configurations. The energy at each of
these other data points, E [Z( j)], j „ i, can be estimated
from the Taylor expansion Ti and the error,
E [Z( j)] ) Ti[Z( j)], can be measured. If there are enough
data points, then we can choose a set ofM points which
are not too far away from Z(i); close enough that the
error in Ti should be dominated by the first term
neglected in the Taylor expansion. Then

E ZðjÞ½ � � Ti ZðjÞ½ � / ZðjÞ � ZðiÞk k3 : ð19Þ
If these M points are randomly scattered about Z(i),

then the average error (over the M points) will be zero
(positive and negative errors are equally likely), but the
average square error is nonzero. If we define an accurate
Taylor expansion as one for which the root-mean-square
error is less than some tolerance, Etol, then a Bayesian
analysis of the errors gives [17]

radðiÞ�6 ¼ 1

M

XM
j¼1

E ZðjÞ½ � � Ti ZðjÞ½ �f g2

E2tol ZðjÞ � ZðiÞk k6
: ð20Þ

A significant improvement in the interpolation accu-
racy can be gained by recognising that the error in the
Taylor expansions is not just a function of distance, it is
also a function of direction. For example, distorting a
data point geometry in one direction might correspond

to compressing an already short bond, so a quadratic
Taylor expansion is unlikely to be accurate over a large
distortion of that type. Conversely, distorting a data
point geometry in another direction might correspond to
a relative rotation of two distant molecular fragments
which is accurately described by the Taylor expansion.
Hence, each Taylor expansion should have associated
‘‘confidence lengths’’ for each direction in space. For
various reasons, it is much simpler to associate a confi-
dence length with each element of Z, and to define the
weight function as

vi ¼
XNðN�1Þ=2

n¼1

Zn � ZnðiÞ
dnðiÞ

� �2
" #q

2

8<
:
þ

XNðN�1Þ=2

n¼1

Zn � ZnðiÞ
dnðiÞ

� �2
" #p

2

9=
;

�1

: ð21Þ

The confidence lengths, dn(i), have been derived from
a Bayesian analysis of the errors in the gradients [17]:

dnðiÞ�6 ¼
1

M

XM
j¼1

@E
@Zn

���
ZðjÞ

�@Ti
@Zn

���
ZðjÞ


 �
ZnðjÞ � ZnðiÞ½ �

� 2

E2
tol

ZðjÞ � ZðiÞk k6
:

ð22Þ
Once there are sufficient data points available, the

most accurate interpolation is given by Eq. (11) with the
weight function defined by Eqs. (14), (21) and (22).

2.6 Growing a PES

Who or what is going to ‘‘give’’ us the locations of the
data points? A data point could be any molecular
configuration and these occupy a 3N ) 6 dimensional
space. It is not feasible to simply place data points on a
uniform or nearly regular grid in 3N ) 6 dimensional
space, if N > 3. If there are d points per degree of
freedom, there are d3N ) 6 grid points. A much more
efficient way of determining the locations of data points
is required.
Traditionally, the locations of stationary points on

the PES have been seen as particularly significant for the
reaction dynamics; the equilibrium configurations of the
reactants and products and the configurations of any
energy barriers separating them. Given these configura-
tions and the second derivatives of the PES at these lo-
cations, the reaction rates (forward and backward) could
be estimated using simple transition-state theory. The
simplest picture of the reaction process is that of motion
along a ‘‘reaction path’’ or ‘‘minimum energy path’’
(MEP) linking reactants, the saddle point (barrier), and
products. This path is commonly thought of as a path
which traces out the bottom of a valley floor on the PES,
a valley which rises to the saddle point and continues on
down to the products. Several different schemes for
locating such paths, including the well-known Fukui
intrinsic reaction path, have been developed [18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Given the energy
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gradients and second derivatives at locations along such
a path, one can estimate the reaction rates with the more
sophisticated variational transition-state theory [31, 32].
So, in this tradition, we choose a set of molecular

configurations on such a reaction path as an initial data
set to describe the PES via Eq. (11). As time has gone
on, our group has become fairly careless about which
MEP is employed; often we simply take configurations
encountered by an ab initio program as it attempts to
minimise the energy of a geometry displaced from the
saddle point. This is just an initial set of data, and so
long as the energy changes by no more than a few
millihartree from one point to the next, this is likely to
suffice as a starting set.
At this point, we have just about exhausted our in-

tuition as to where data points should be located.
Henceforth, the important decisions are automated. The
automation is based on the following reasoning. Ulti-
mately the PES is used to simulate the chemical reaction
dynamics in order to calculate observables such as the
reaction rate or the distribution of energy in the reaction
products, or the dependence of the reaction rate on the
initial state of the reactants. The dynamical calculations
can also provide qualitative and quantitative informa-
tion about the reaction mechanism. The relationship
between the PES and such observables is very indirect
and certainly obscure. However, it is certain that the
value of the PES at configurations which the molecule
passes through during the dynamics must play some role
in determining the observed dynamics. It is only at these
configurations where the PES must be known, not
throughout the whole 3N ) 6 dimensional configuration
space. It is possible but difficult to discover which con-
figurations are involved in the quantum dynamics of the
reaction. It is very easy to discover which configurations
are involved in the classical dynamics, and we will as-
sume that much the same configurations are important
in both classical and exact quantum dynamics.
Given an initial set of data points on the MEP for the

reaction, the PES of Eq. (11) is defined, albeit inaccu-
rately at configurations far from this path. We simulate
the chemical reaction in a standard way by solving the
classical (Newtonian) equations of motion with initial
conditions corresponding to the collision of the reacting
molecules. The choice of initial conditions should reflect
the observable properties we wish to simulate, for
example, the initial vibration–rotation–translational
energies or temperature should be at least as high as the
values appropriate to any relevant experiments. Typi-
cally, a small number (say 10) of trajectories (collisions)
are calculated, and the molecular configuration is peri-
odically written to a file during these trajectories. This
set of configurations Ntraj represents a small (typically of
order 103) sample of the dynamically important portion
of configuration space. We choose one of these config-
urations to be a new data point. Which one? The aim of
adding a new data point is to improve the accuracy of
the interpolated PES as much as possible. Two different
criteria have been used in an attempt to achieve this aim.
One argument suggests that the best location for a
new data point would be in the region most frequently
‘‘visited’’ by our classical trajectories, so long as there is

not already one or more data points there. In this way,
we might hope to improve the accuracy of the PES over
as large a proportion of the relevant configuration space
as possible. To implement this criterion, a quantity h(k)
is evaluated at each of the Ntraj configurations:

hðkÞ ¼

PNtraj
m¼1
m6¼k

vm ZðkÞ½ �

PNdata

i¼1
vi ZðkÞ½ �

: ð23Þ

The ratio h(k) is largest when Z(k) is near other
sampled trajectory configurations, but is far from the
existing data points. The trajectory configuration with
the largest value of h is chosen to be a new data point
under this criterion. A second argument suggests that
the accuracy of the PES could best be improved if a new
data point were added where the PES is most inaccurate.
Unfortunately, the accuracy of the PES is not known
except at the existing data points. However, the uncer-
tainty in the interpolated PES at each of the Ntraj con-
figurations can easily be evaluated as r(k):

r2ðkÞ ¼
XNdata
i¼1

wi ZðkÞ½ � Ti ZðkÞ½ � � E ZðkÞ½ �f g2 ; ð24Þ

where E[Z(k)] in Eq. (24) is the interpolated (averaged)
energy of Eq. (11). The variance associated with the
average is an estimate of the uncertainty in the average.
If a number of data points which have significant weight
in Eq. (11) disagree about the value of the PES at Z(k),
then the variance in Eq. (24) will be large. We assume
that if the uncertainty in the PES is large at some Z(k),
then it is more likely that the estimated value of E[Z(k)]

Fig. 2. Reaction probability (as a relative frequency of reactive
trajectories in 2,000 trajectories) versus number of data points
defining the potential-energy surface (PES) for two surfaces grown
with data chosen by using Eq. (23) (closed circles), or by using
Eq. (24) (open circles). Initially, 30 points along the minimum
energy path (MEP) were used to define the PES. The reaction
probabilities from two simulations of this MEP surface are shown
for comparison (diamonds) The reaction probability obtained from
the Schatz and Elgersma (SE) surface is shown as a dashed line. The
standard deviation, due to the finite trajectory samples, is very close
to 0.01 for all data shown
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is inaccurate. Hence, the Z(k) with the largest value of
r(k) is chosen as a new data point under this criterion.
The ab initio calculations for the energy and deriva-

tives at the chosen Z(k) are carried out, and Z(k) is
added to the data set. Classical trajectories are now
evaluated with the new PES; the region of configuration
space sampled by these trajectories must be (subtly
perhaps) different from that sampled previously. Hence,
if we use one or other criterion and choose yet another
data point, the PES will be modified in a still different
manner. The cycle of evaluating a small set of trajecto-
ries to generate a sample of configurations, choosing one
of these as a new data point, and evaluating the ab initio
data at this configuration to increment the data set is
repeated again and again until the PES is sufficiently
accurate globally.
How do we know the PES is sufficiently accurate?

Because the observables of interest are converged: As the
data set ‘‘grows’’, say after every 100 data points are
added, large numbers of classical trajectories are evalu-
ated to simulate the reaction and measure some relevant
observables, for example, the reaction cross section or

thermal rate coefficient. When the values of these ob-
servables do not change with increasing Ndata, the PES is
‘‘converged’’ to sufficient accuracy.

Fig. 3. Relative translational energy distributions for a reactive
collisions and b inelastic collisions under the same initial conditions
as Fig. 2. The distributions obtained from the SE surface are shown
(diamonds) and are compared to the results obtained on a surface
grown using Eq. (23) (closed circles) and using Eq. (24) (open
circles). The distributions were obtained using bin sizes of about
26.3 kJmol)1

Fig. 4. The quantum probability of reaction for OH(v ¼ 0,
j ¼ 0) + H2(v ¼ 0, j ¼ 0) fi H2O + H, with total angular mo-
mentum J ¼ 0, on the modified SE surface as a function of the
relative translational energy of the reactants. The exact result (solid
line) for the modified SE surface is compared with values given by
the interpolated PES with 30 (dashed line with open circles), 191
(long-dashed line), 291 (short-dashed line), and 391 (closed circles)
data points

Fig. 5. The quantum probability of reaction for BeH(v ¼ 0,
j ¼ 0) + H2(v ¼ 0, j ¼ 0) fi BeH2 + H, with J ¼ 0, on the inter-
polated MP2/6-311G(d,p) surface as a function of the relative
translational energy of the reactants. Results are shown for PESs
with 960 (dashed line), 1,110 (closed circles) and 1,300 (solid line)
data points
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Note that there are two important aspects of ‘‘auto-
mated learning’’ involved in this process of iteratively
constructing a PES (we say we ‘‘grow’’ PESs). The
process began with a PES defined by data in the vicinity
of some reaction path. However, as each new data point
is added, the shape of the PES changes. The computer
program ‘‘learns’’ more about the shape of the PES at
each cycle. The small set of classical trajectories then
explores the new shape of the PES; the molecule may
move to new configurations not previously allowed by
the PES, so the program ‘‘learns’’ about new regions of
configuration space. In practice, whole, here thereto
unknown, reactions and reaction paths can be discov-
ered. The second type of ‘‘automated learning’’ is
achieved by the iterative improvement in the confidence
lengths used in the weight function. As the data set
grows, the evaluation of the confidence lengths via
Eq. (22) becomes more accurate, so the interpolation
becomes more accurate; the program ‘‘learns’’ more
accurate values of the PES not only by accumulating
more ab initio data, but by learning how to use all its
accumulated data more accurately.

2.7 Symmetry for free

Any molecular PES must have the correct symmetry
properties, or else the dynamical relevance of the
calculated values of observables is questionable. A
molecular PES must be invariant to translation and
rotation of the molecule and inversion of the molecule
(X is replaced by )X). These properties are satisfied by
Eq. (11) because the PES is expressed purely in terms of
atom–atom distances which are invariant to translation,
rotation and inversion. A molecular PES is also
invariant to the permutation or exchange of indistin-
guishable nuclei. The operations of permuting the
positions of indistinguishable nuclei form a group called
the complete nuclear permutation (CNP) group. The
number of such permutations (the order of the group) is
denoted by |CNP|. For example, the CNP group for
methane has order 24 (4!), for ethane it is 1,440 (6!2!). It
is a very simple matter to ensure that the PES of Eq. (11)
is an invariant of the CNP group.
Let PX denote a molecular configuration which is

obtained from X by permuting the Cartesian coordi-
nates of indistinguishable nuclei. If we evaluate the ab
initio energy and its Cartesian derivatives at X, then the
energy at PX is the same as at X, the vector of first
derivatives at PX is the same as at X, except that the
corresponding derivatives are permuted. Moreover, the
matrix of second derivatives at PX is the same as at X
except that the corresponding rows and columns are
permuted. So, for the computational cost of these cal-
culations at X, the energy, gradient and second deriva-
tives are known at |CNP| configurations. It is a simple
matter to show that the internal coordinates [5] n (see
Eq. 7) and the confidence lengths [17] d (see Eq. 24) are
also simply related by permutations at each configura-
tion. Hence, it is trivially easy to include all |CNP|
versions of each calculated data point in the data set.
The data set is thus an invariant of the CNP group and

the PES of Eq. (11) is therefore an invariant of the CNP
group.
Aside: It may be that many of the permutations of

indistinguishable atoms correspond to operations that
are physically unfeasible at the energies of interest. The
symmetry group which contains the set of feasible per-
mutations and molecular inversions is known as the
molecular symmetry group [33]. Since the computational
cost of evaluating Eq. (11) is partly dependent on the
number of data points in total, there may be some ad-
vantage, and no significant loss of accuracy, in adding
only the feasible permutations of a data point to the set.

2.8 Automation

The complete process for iteratively ‘‘growing’’ the data
set, for calculating the internal coordinates at each data
point, for calculating the confidence lengths, and for
implementing the correct CNP symmetry in the PES has
been automated in a package of Fortran programs and
Unix scripts called Grow. These programs also allow the
user to generate classical simulations of the reactions
and to calculate reaction cross sections. The package is
freely available to noncommercial researchers.

3 Accuracy

To prove that the Grow scheme can be sufficiently
accurate, we constructed a PES for the reaction

OHþH2 ! H2OþH ð25Þ
not from ab initio calculations, but from the analytic
PES of Schatz and Elgersma (SE) [34]. That is, the
energy, energy gradient and second derivatives were

Fig. 6. The energy profile along MEPs on the OH3
+ surface as a

function of a reaction coordinate [39]. The geometries of stationary
points on the surface are sketched
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evaluated from a version of the SE surface. The
interpolated PES is therefore an approximation to a
known surface, and the reaction dynamics on both the
SE surface and its interpolated approximation could be
directly compared.
The probability of the reaction shown in Eq. (25)

occurring in a classical simulation of the OH + H2

collision under the same given initial conditions [35] for
both the SE and interpolated surfaces is shown in Fig. 2.
It is clear from the figure that the reaction probability
converges to the correct value as the size of the data set
increases, when the data point choice is based on either
Eq. (23) or Eq. (24). For the same collision conditions as
Fig. 2, Fig. 3 presents the distribution of relative trans-
lational energy for the products, and for the unreacted
colliders, using the SE surface and two interpolated
surfaces. The accuracy of these observables is apparent.
The interpolated PESs used to calculate these data were
constructed with the original simple weight function
of Eq. (17). A direct comparison of the SE surface and
the interpolated approximations at a large number of
molecular configurations showed that the mean absolute
error in the interpolation was about 2.5 kJmol)1 when
the ‘‘h weight’’ of Eq. (23) was used, and only about
1.1 kJmol)1 when the variance weight of Eq. (24) was
used. The total energy for these trajectory simulations
was about 383 kJmol)1, so the error in the interpolated
energy is only about 0.65 and 0.29% of the available
energy in the two methods. Clearly errors of this mag-
nitude have minimal effect on the calculated observables
for this system.
However, subsequent model studies of a system

containing more atoms, the

Hþ CH4 ! H2 þ CH3 ð26Þ
reaction, showed that the error in the gradient of the
interpolated PES was too large when the simple weight
function of Eq. (17) was used. The mean error in the
gradient and the mean error in the interpolated energy

were significantly reduced by the introduction of the
more sophisticated weight function of Eq. (18). The
‘‘smoothness’’ of the PES produced by this type of
weight function also proved to be essential for the
accurate calculation of quantum dynamics in systems of
four atoms.
The results for the quantum probability of the reac-

tion shown in Eq. (25) calculated on a modified version
of the SE surface and interpolated approximants, ob-
tained using Eq. (21) [36], are presented in Fig. 4. It is
clear that the quantum dynamics converges as the size of
the data set increases. Similar results are presented in
Fig. 5 for the reaction

BeHþH2 ! BeH2 þH ð27Þ
obtained from an interpolated PES, constructed at the
MP2/6-311G(d,p) level of ab initio theory. The quantum
reaction probability, in this case, is marked by a
complicated series of resonances due to an intermediate
potential well on the surface. These features are very well
reproduced by the interpolated PES evaluated using the
two-part weight function. Readers might note that the
maximum number of data points used for this reaction is
much higher than for the OH3 system. In fact, the
reaction probability appears to have converged for a
PES with much fewer than 1,300 data points. The
Bayesian analysis and associated derivation of the two-
part weight function was obtained as a consequence
of the fact that the quantum reaction probability for
BeH + H2 did not converge very accurately for the
simple weight function of Eq. (17), even when the data
set had been grown to 1,300 points.

4 Applications

Further development of this general approach to the
construction of molecular PESs is still the subject of
active research. However, a number of surfaces have
already been constructed by this stage in the methodol-
ogy development. Two of these surfaces are discussed
here to convey an impression of the utility of the
method. To date, PESs have been constructed by our
group for 14 reactions (ten of which have been published
so far, which suggests that PESs can now be generated
faster than my group writes papers) [37, 38, 39, 40, 41,
42, 43, 44, 45]. The choice of reactions studied has been
determined by a number of factors: the chemistry
involved was interesting to the authors, or the system
provided some interesting technical difficulty for the PES
construction method, and finally, an accurate PES could
be constructed with computationally affordable ab initio
methods.
The molecular systems studied so far are XH3

+,
where X ¼ B, C, N, and O; XH3, where X ¼ Be and
O; X + COH+, where X ¼ Ne, Ar, Kr, FH, and H2O;
H + HCO; H + CH4; and triazine (H3C3N3). All these
surfaces have been constructed with ‘‘single-determi-
nant’’ ab initio methods, except for CH3

+ where sur-
faces for both the ground and first excited states were
constructed at the multiconfigurational self-consistent-
field level of theory.

Fig. 7. The total probability for the reactions shown in Eqs. (28)
and (29) as a function of the impact parameter for a relative
translational energy of 4.6 kJmol)1. The figure was generated from
4,000 trajectories. The error bars represent one standard deviation
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The preponderance of hydrogen atoms in these re-
actions reflects a desire to construct PESs which can be
used in the development of quantum scattering calcula-
tions, the abundance of H2 and H3

+ in the interstellar
medium, the importance of hydrogen- and proton-
transfer reactions in many situations, and the relative
ease of ab initio calculations involving fewer electrons.
It was natural, therefore, that our earliest applications
featured ‘‘hydrogen-rich’’ systems. Two examples might
be useful.

4.1 OH3
+

The reaction

Hþ
3 þO! H2O

þ þH ð28Þ
is cited as the only known example where the H3

+ cation
donates H2

+ rather than H+ to a neutral species.
However, originally the product channel in the reac-
tion shown in Eq. (28) was not directly observed [46];
only H3O

+ could be measured because OH+ and H2O
+

were rapidly converted to this species. To investigate
whether the reaction shown in Eq. (28) does take place,
and at what rate, a PES was grown at the MP2/
6-311+G(2d,p) level of theory [39]. The details can be
found in the original paper, but this level of theory was
chosen, as usual, as a compromise between accuracy and
computational cost, keeping in mind that second deriv-
atives of the energy are needed to construct the PES. For
this ion–molecule reaction (as for many others) the
exothermicity of the reaction is large and energy barriers
are either not present or not critical to the reaction rate,
so ab initio calculations which are accurate to within
10 kJmol)1 or so are adequate to describe the dynamics
well enough to provide useful comparison with experi-
ment. On this surface, there are other reactions which can
also take place at low energy in this system:

Hþ
3 þO! OHþ þH2 ; ð29Þ

OHþ þH2 ! H2O
þ þH : ð30Þ

Each of these reactions has important implications
for interstellar chemistry as they combine with other
reactions to synthesise H2O in molecular clouds.
To begin construction of the PES, some 42 geometries

were selected which roughly described the MEP for
O+H3

+ fi OH++H2 only. The PES construction
scheme was then carried out until 400 data points had
been added using trajectories initiated at O+H3

+. A
further 300 points were then added using trajectories
initiated at OH++H2. Even though no data points
relevant to the reaction in Eq. (28) were put into the
data set ‘‘by hand’’, some trajectories initiated at
O+H3

+ or OH++H2 produced H+H2O
+ products.

The Grow scheme discovered the reactions shown in
Eqs. (28) and (30) automatically. Subsequently, using
the trajectories as a guide, a saddle point for the reaction
in Eq. (28) was discovered and added to the data set. To
give a simple view of the overall surface, the MEPs for
all the reactions were evaluated on the interpolated PES
and are shown in Fig. 6.

Large-scale simulations of the O+H3
+ collision

show that the reaction cross sections for the reactions
shown in Eqs. (28) and (29) are converged with respect
to the size of the data set. The reaction cross section is
determined by both the ion-induced-dipole attraction
(Langevin model) and the ion-quadrupole attraction
(correctly included in the ab initio PES). The total re-
action probability for the reactions shown in Eqs. (28)
and (29) is shown in Fig. 7 as a function of the impact
parameter for a trajectory (the distance at which the
fragments would have passed each other if they had not
interacted). You can see that even for ‘‘head-on’’ colli-
sions (zero impact parameter), the reaction probability is
not unity, but only about 80%. Even for such small
species, reaction cannot always occur for all relative
orientations of the molecules at impact. Allowing for the
effect of spin–orbit coupling on the initial populations of
the oxygen electronic states, the trajectory study allows
us to estimate the thermal rate coefficient. At 300 K, this
analysis yields a total rate coefficient for the reactions
shown in Eqs. (28) and (29) of about 9.4 · 10)10 cm3s)1,
which compares well with the early experimental value
of 8 ± 4 · 10)10 cm3s)1. The fractions of reactive
trajectories that lead to the reactions shown in Eq.
(28) or Eq. (29) remain approximately constant at
0.056 ± 0.016 and 0.944 ± 0.016, respectively, over the
energy range studied. The percentage of H2O

+ formed
(5.6%) is possibly an underestimate, because this prod-
uct could also be formed if the molecule undergoes in-
tersystem crossing to the singlet electronic state. More
recent experiments [47] have indeed reported that H2O

+

constitutes nearer 30% of the products. Intersystem
crossing and other non-Born–Oppenheimer effects
are beyond the scope of our approach at present. In
a similar way, trajectories for the reaction shown in
Eq. (30) allow us to determine a rate coefficient of
6.7 · 10)10 cm3s)1, which is slightly less than the
experimental value of (9.7 ± 1.9) · 10)10 cm3s)1 [47].
Clearly, even a modest level of ab initio theory has al-
lowed us to construct a PES which describes all three
reactions, Eqs. (28), (29) and (30), to near experimental
accuracy. The fact that we can obtain reasonably reliable
estimates of the branching ratio for the reactions in
Eqs. (28) and (29) indicates that this approach repre-
sents a useful adjunct to experimental studies [47].

4.2 OH3

Sometimes relatively heroic levels of ab initio calculation
are required for accurate study of reaction dynamics.
The reaction

OHþH2 ! HþH2O ð31Þ
has attracted experimental and theoretical study for a
number of reasons. It is the simplest example of hydrogen
abstraction by the hydroxyl radical, which plays an
important role in both atmospheric chemistry and
combustion (the reaction itself is significant in hydrogen
combustion). Recently, molecular beam studies of this
reaction have shown that the energy available to the
products is distributed nonstatistically [48]. These obser-
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vations complement the earlier studies which suggested
and then demonstrated that the reverse reaction

HþH2O! OHþH2 ð32Þ

is activated preferentially by excitation of some modes of
the reactants [49, 50, 51, 52, 53, 54, 55, 56]. Fortunately,
the presence of three hydrogen atoms makes the system
amenable to quantum dynamics calculations. The com-
bination of intriguing experimental observations and
tractable calculations lead to the reaction shown in
Eq. (31) becoming a benchmark problem in theoretical
reaction dynamics [57, 58, 59, 60, 61]. Accurate full
quantum calculations of state-to-state reaction cross
sections for this reaction on a model PES had been
reported [58, 59]. Hence, complete ab initio calculation
of the reaction dynamics only required the evaluation of
an accurate PES.
The details of the ab initio studies of this system are

presented elsewhere [40, 45]. There is an energy barrier
for these reactions which can only be accurately calcu-
lated using very high levels of ab initio theory. The PES
was originally developed for reaction from H + H2O,
using the QCISD(T)/6-311++G(3df,2pd) level of theo-
ry, and using classical simulations constrained to ensure
there are no data which correspond to HO . . .H2 con-
figurations far into the OH+H2 channel. HF calcula-
tions, on which the QCISD(T) calculations are based,
often did not converge for longer HO . . .H2 distances
because of the presence of a very low lying excited
electronic state. Nevertheless, the PES is sufficiently
global in scope to allow evaluation of the reaction cross
sections for the reaction shown in Eq. (32) and the
exchange process

HþD2O! HODþD : ð33Þ

The reaction cross sections for this process were
found to be in excellent agreement with the available
experimental data [62].
To treat the reaction shown in Eq. (31), the ground-

state PES was generated at the MRCI+Q/aug-
cc-pVTZ level of theory, and the energies were adjusted
to within close agreement with the QCISD(T)/
6-311++G(3df,2pd) values. The surface is thus a hybrid
of two levels of ab initio theory. Finally, the energy of
each data point (but not the gradients or second deriv-
atives) was replaced by the more reliable UCCSD(T)/
aug-cc-pVQZ value. A small number of data points in
the OH + H2 valley were discarded because the neces-
sary HF/aug-cc-pVQZ wavefunction did not converge.
With this very accurate PES, excellent agreement was
obtained between the calculated quantum reactive
scattering and experiment, even for a very theoretically
demanding quantity like the thermal rate coefficient [63].

5 Concluding remarks

The Grow scheme for constructing PESs has been
successfully applied to 14 different reactions, involving
up to nine atoms, although most were tetraatomic
systems. So far, the scheme has not failed to converge

the PES to chemical accuracy. Just as importantly
perhaps, the automated character of the process can
reveal qualitative aspects of the dynamics which were
not previously understood. This makes it fun to do.

Acknowledgements. The methods described in this overview are
the result of collaborations with former members of my group, in
particular with Josef Ischtwan, Meredith Jordon, Keiran Thomp-
son and Ryan Bettens. I am also indebted for inspiration gained
from many discussions with my colleagues Leo Radom and
Donghui Zhang (National University of Singapore). This work
has been supported by the Supercomputer Facility of the Austra-
lian National University and the Australian Partnership for
Advanced Computing.

References

1. Collins MA, Parsons DF (1993) J Chem Phys 99: 6756
2. Collins MA, Thompson KC (1995) In: Bonchev D, Rouvray
DH (eds) Chemical group theory: techniques and applications.
Gordon and Breach, Reading, p 191

3. Parr RG, White RJ (1968) J Chem Phys 49: 1059
4. Simons G, Parr RG, Finlan JM (1973) J Chem Phys 59: 3229
5. Thompson KC, Jordan MJT, Collins MA (1998) J Chem Phys
108: 8302

6. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations.
New York, Dover

7. Pulay P, Fogarasi G (1992) J Chem Phys 96: 2856
8. Jackels CF, Gu Z, Truhlar DG (1995) J Chem Phys 102: 3188
9. Nguyen KA, Jackels CF, Truhlar DG (1996) J Chem Phys 104:
6491

10. Chuang Y-Y, Truhlar DG (1997) J Chem Phys 107: 83
11. Ben-Israel A, Greville TN (1974) Generalised inverses: theory

and applications. Wiley-Interscience, New York
12. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992)

Numerical recipes in Fortran: the art of scientific computing,
2nd edn. Cambridge University Press, Cambridge

13. Thompson KC, Jordan MJT, Collins MA (1998) J Chem Phys
108: 564

14. Farwig R (1986) Math Comput 46: 577
15. Farwig R (1987) In: Mason JC, Cox MG (eds) Algorithms for

approximation. Clarendon, Oxford, p 194
16. Ischtwan J, Collins MA (1994) J Chem Phys 100:8080
17. Bettens RPA, Collins MA (1999) J Chem Phys 111: 816
18. Page M (1994) Comput Phys Commun 84: 115
19. Gonzalez C, Schlegel HB (1989) J Chem Phys 90: 2154
20. Gonzalez C, Schlegel HB (1990) J Phys Chem 94: 5523
21. Gonzalez C, Schlegel HB (1991) J Chem Phys 95: 5853
22. Ischtwan J, Collins MA (1988) J Chem Phys 89: 2881
23. Garrett BC, Redmon MJ, Steckler R, Truhlar DG, Baldridge

KK, Bartol D, Schmidt MW, Gordon MS (1988) J Phys Chem
92: 1476

24. Schlegel HB (1994) In: Yarkony DR (ed) Modern electronic
structure theory. World Scientific, Singapore, p 459

25. Page M, McIver JW (1988) J Chem Phys 88: 922
26. Page M, Doubleday C, McIver JW (1990) J Chem Phys 93: 5634
27. Elber R, Karplus M (1987) Chem Phys Lett 139: 375
28. Chiu SS-L, McDoull JJW, Hillier IH (1994) J Chem Soc

Faraday Trans 90: 1575
29. Melissas VS, Truhlar DG, Garrett BC (1992) J Chem Phys 96:

5758
30. (a) Sun J-Q, Ruedenberg K (1993) J Chem Phys 99: 5257; (b)

Sun J-Q, Ruedenberg K (1993) J Chem Phys 99: 5269; (c) Sun
J-Q, Ruedenberg K (1993) J Chem Phys 99: 5276

31. Truhlar DG, Gordon MS (1990) Science 249: 491
32. Wardlaw DM, Marcus RA (1991) Adv Chem Phys 70: 231
33. Bunker PR (1979) Molecular symmetry and spectroscopy.

Academic, New York
34. Schatz GC, Elgersma H (1980) Chem Phys Lett 73: 21

323



35. Thompson KC, Collins MA (1997) J Chem Soc Faraday Trans
93: 871

36. Collins MA, Zhang DH (1999) J Chem Phys 111: 9924
37. Bettens RPA, Collins MA (1998) J Chem Phys 108: 2424
38. Bettens RPA, Collins MA (1998) J Chem Phys 109: 9728
39. Bettens RPA, Hansen T, Collins MA (1999) J Chem Phys 111:

6322
40. Bettens RPA, Collins MA, Jordan MJT, Zhang DH (2000)

J Chem Phys 112: 10162
41. Chalk AJ, Petrie S, Radom L, Collins MA (2000) J Chem Phys

112: 6625
42. Collins MA, Bettens RPA (1999) Phys Chem Chem Phys 1: 939
43. Fuller RO, Bettens RPA, Collins MA (2001) J Chem Phys 114:

10711
44. Song K, Collins MA (2001) Chem Phys Lett 335: 481
45. Yang M, Zhang DH, Collins MA, Lee S-Y (2001) J Chem Phys

115: 174
46. Fehsenfeld FC (1976) Ap J 209: 638
47. Milligan DB, McEwan MJ (2000) Chem Phys Lett 319: 482
48. Strazisar BR, Lin C, Davis HF (2000) Science 290: 958
49. Schatz GC, Colton MC, Grant JL (1984) J Phys Chem 88: 2971

50. Singha A, Hsiao MC, Crim FF (1990) J Chem Phys 92: 6333
51. Crim FF (1996) J Phys Chem 100: 12725
52. Crim FF (1999) Acc Chem Res 32: 877
53. Bronikowski MJ, Simpson WR, Girad B, Zare RN (1991)

J Chem Phys 95: 8647
54. Zare RN (1998) Science 279: 1875
55. Hawthorne G, Sharkey P, Smith IWM (1998) J Chem Phys 108:

4693
56. Barnes P, Sharkey P, Sims IR, Smith IWM (1999) Faraday

Discuss 113: 167
57. Bowman JM, Schatz GC (1995) Annu Rev Phys Chem 46: 169
58. Zhang DH, Light JC (1996) J Chem Phys 105: 1291
59. Zhu W, Dai J, Zhang JH, Zhang DH (1996) J Chem Phys 105:

4881
60. Manthe U, Seiderman T, Miller WH (1993) J Chem Phys 99:

10078
61. Pogrebnya SK, Echave J, Clary DC (1997) J Chem Phys 107:

8975
62. Zhang DH, Collins MA, Lee S-Y (2000) Science 290: 961
63. Yang M, Zhang DH, Collins MA, Lee S-Y (2001) J Chem Phys

114: 4759

324


